Friday, November 22, 2024

MCQ Mathematics Chapter 4: COMPLEX NUMBERS AND QUADRATIC EQUATIONS, HS 1st year

 


MCQ 1:

Which of the following numbers is a complex number?
A) 3+4i3 + 4i
B) 5-5
C) 77
D) 5\sqrt{5}

Answer: A) 3+4i3 + 4i


MCQ 2:

What is the real part of the complex number z=23iz = 2 - 3i?
A) 22
B) 3-3
C) 00
D) 55

Answer: A) 22


MCQ 3:

If z1=3+4iz_1 = 3 + 4i and z2=12iz_2 = 1 - 2i, what is z1+z2z_1 + z_2?
A) 4+2i4 + 2i
B) 2+6i2 + 6i
C) 3+2i3 + 2i
D) 4+6i4 + 6i

Answer: A) 4+2i4 + 2i


MCQ 4:

What is the multiplicative identity in the system of complex numbers?
A) 0+0i0 + 0i
B) 1+0i1 + 0i
C) ii
D) 1i1 - i

Answer: B) 1+0i1 + 0i


MCQ 5:

Which of the following is the modulus of the complex number z=3+4iz = 3 + 4i?
A) 55
B) 77
C) 2525
D) 33

Answer: A) 55
Explanation: The modulus is calculated as 32+42=9+16=5\sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5.


MCQ 6:

The conjugate of the complex number z=52iz = 5 - 2i is:
A) 5+2i5 + 2i
B) 52i5 - 2i
C) 5+2i-5 + 2i
D) 52i-5 - 2i

Answer: A) 5+2i5 + 2i


MCQ 7:

What is the square of ii in the system of complex numbers?
A) 1-1
B) 11
C) ii
D) 00

Answer: A) 1-1


MCQ 8:

If z1=2+iz_1 = 2 + i and z2=1iz_2 = 1 - i, what is z1z2z_1 \cdot z_2?
A) 3i3 - i
B) 2+2i2 + 2i
C) 12i1 - 2i
D) 3+i3 + i

Answer: D) 3+i3 + i
Explanation: z1z2=(2+i)(1i)=22i+ii2=3+iz_1 \cdot z_2 = (2 + i)(1 - i) = 2 - 2i + i - i^2 = 3 + i.


MCQ 9:

The equation x2+1=0x^2 + 1 = 0 has solutions in the form of which numbers?
A) Real numbers
B) Rational numbers
C) Complex numbers
D) Natural numbers

Answer: C) Complex numbers


MCQ 10:

If z=4+3iz = 4 + 3i, then zˉz=?\bar{z} \cdot z = ?
A) 2525
B) 1313
C) 77
D) 1616

Answer: A) 2525
Explanation: zˉz=(43i)(4+3i)=42+32=16+9=25 \bar{z} \cdot z = (4 - 3i)(4 + 3i) = 4^2 + 3^2 = 16 + 9 = 25.


MCQ 11:

What is the imaginary part of the complex number z=5+7iz = -5 + 7i?
A) 5-5
B) 77
C) 00
D) 7-7

Answer: B) 77


MCQ 12:

The addition of two complex numbers z1=a+ibz_1 = a + ib and z2=c+idz_2 = c + id results in:
A) (a+b)+i(c+d)(a + b) + i(c + d)
B) (a+c)+i(b+d)(a + c) + i(b + d)
C) (ac)+i(bd)(a - c) + i(b - d)
D) (a+d)+i(b+c)(a + d) + i(b + c)

Answer: B) (a+c)+i(b+d)(a + c) + i(b + d)


MCQ 13:

If z=3+4iz = 3 + 4i, what is its modulus squared, z2 |z|^2?
A) 77
B) 55
C) 2525
D) 1515

Answer: C) 2525
Explanation: z2=32+42=9+16=25. |z|^2 = 3^2 + 4^2 = 9 + 16 = 25.


MCQ 14:

Which of the following properties is true for multiplication of complex numbers?
A) Closure law
B) Commutative law
C) Associative law
D) All of the above

Answer: D) All of the above


MCQ 15:

The complex conjugate of z=34iz = -3 - 4i is:
A) 3+4i-3 + 4i
B) 34i-3 - 4i
C) 3+4i3 + 4i
D) 34i3 - 4i

Answer: A) 3+4i-3 + 4i


MCQ 16:

If i4=1i^4 = 1, then i5i^{5} is equal to:
A) ii
B) 1-1
C) i-i
D) 11

Answer: A) ii


MCQ 17:

In the Argand plane, the x-axis corresponds to:
A) Imaginary axis
B) Real axis
C) Positive axis
D) Complex axis

Answer: B) Real axis


MCQ 18:

For a complex number z=52iz = 5 - 2i, what is its modulus?
A) 23\sqrt{23}
B) 2323
C) 77
D) 55

Answer: A) 23\sqrt{23}
Explanation: z=52+(2)2=25+4=23. |z| = \sqrt{5^2 + (-2)^2} = \sqrt{25 + 4} = \sqrt{23}.


MCQ 19:

The equation z2+4=0z^2 + 4 = 0 has solutions:
A) ±2i \pm 2i
B) ±2 \pm 2
C) 2i,22i, -2
D) No solution

Answer: A) ±2i \pm 2i


MCQ 20:

The product of z1=2+3iz_1 = 2 + 3i and z2=1iz_2 = 1 - i is:
A) 5+i5 + i
B) 5i5 - i
C) 23i2 - 3i
D) 55

Answer: B) 5i5 - i
Explanation: z1z2=(2+3i)(1i)=22i+3i3i2=5i.z_1 z_2 = (2 + 3i)(1 - i) = 2 - 2i + 3i - 3i^2 = 5 - i.


MCQ 21:

For any integer kk, i4k+3i^{4k + 3} is equal to:
A) ii
B) 1-1
C) i-i
D) 11

Answer: C) i-i


MCQ 22:

The multiplicative inverse of a non-zero complex number z=a+biz = a + bi is:
A) 1a+bi\frac{1}{a + bi}
B) aa2+b2+ba2+b2i\frac{a}{a^2 + b^2} + \frac{-b}{a^2 + b^2}i
C) a+bia + bi
D) abia - bi

Answer: B) aa2+b2+ba2+b2i\frac{a}{a^2 + b^2} + \frac{-b}{a^2 + b^2}i


MCQ 23:

If z1=2+iz_1 = 2 + i and z2=32iz_2 = 3 - 2i, the division z1z2\frac{z_1}{z_2} results in:
A) 1+i1 + i
B) 4+i13\frac{4 + i}{13}
C) 1+i-1 + i
D) 33

Answer: B) 4+i13\frac{4 + i}{13}


MCQ 24:

The conjugate of z1z2z_1 z_2 is equal to:
A) z1ˉ+z2ˉ\bar{z_1} + \bar{z_2}
B) z1ˉz2ˉ\bar{z_1} \bar{z_2}
C) z1+z2z_1 + z_2
D) None of the above

Answer: B) z1ˉz2ˉ\bar{z_1} \bar{z_2}


MCQ 25:

If z=x+yiz = x + yi, then z2=?|z|^2 = ?
A) x2+y2x^2 + y^2
B) x2y2x^2 - y^2
C) x+y|x| + |y|
D) (x+y)2(x + y)^2

Answer: A) x2+y2x^2 + y^2


MCQ 26:

If z=43iz = 4 - 3i, then its conjugate zˉ\bar{z} is:
A) 4+3i4 + 3i
B) 43i4 - 3i
C) 4+3i-4 + 3i
D) 43i-4 - 3i

Answer: A) 4+3i4 + 3i


MCQ 27:

The solution of the equation x2+9=0x^2 + 9 = 0 is:
A) x=±3x = \pm 3
B) x=±i3x = \pm i3
C) x=±i9x = \pm i9
D) No solution

Answer: B) x=±i3x = \pm i3


MCQ 28:

What is (1+i)2(1 + i)^2?
A) 1+2i1 + 2i
B) 2i2i
C) 2i12i - 1
D) 12i1 - 2i

Answer: C) 2i12i - 1
Explanation: (1+i)2=(1+i)(1+i)=1+2i+i2=1+2i1=2i.(1 + i)^2 = (1 + i)(1 + i) = 1 + 2i + i^2 = 1 + 2i - 1 = 2i.


MCQ 29:

What is the polar representation of z=1+iz = 1 + i?
A) 2eiπ/4\sqrt{2} e^{i\pi/4}
B) 2eiπ/4\sqrt{2} e^{-i\pi/4}
C) 2eiπ/2\sqrt{2} e^{i\pi/2}
D) 2eiπ/42e^{i\pi/4}

Answer: A) 2eiπ/4\sqrt{2} e^{i\pi/4}


MCQ 30:

Which of the following is not true for complex numbers?
A) z+zˉ=2Re(z)z + \bar{z} = 2\text{Re}(z)
B) zzˉ=z2z \cdot \bar{z} = |z|^2
C) z1+z2ˉ=z1ˉ+z2ˉ\bar{z_1 + z_2} = \bar{z_1} + \bar{z_2}
D) z1+z2=z1+z2|z_1 + z_2| = |z_1| + |z_2|

Answer: D) z1+z2=z1+z2|z_1 + z_2| = |z_1| + |z_2|
Explanation: The modulus of a sum is not always the sum of the moduli.


MCQ 31:

If z=a+biz = a + bi, then (zˉ)2(\bar{z})^2 is:
A) a2+b2a^2 + b^2
B) a2b22abia^2 - b^2 - 2abi
C) a2b2+2abia^2 - b^2 + 2abi
D) (abi)2(a - bi)^2

Answer: D) (abi)2(a - bi)^2


MCQ 32:

The cube of ii, i3i^3, is equal to:
A) ii
B) 1-1
C) i-i
D) 11

Answer: C) i-i
Explanation: i3=i2i=1i=i.i^3 = i^2 \cdot i = -1 \cdot i = -i.


MCQ 33:

What is the multiplicative identity for complex numbers?
A) 00
B) 1+i1 + i
C) 11
D) ii

Answer: C) 11


MCQ 34:

Which equation represents a circle in the Argand plane?
A) z1=2|z - 1| = 2
B) z=2|z| = 2
C) z+2=0|z + 2| = 0
D) z=2|z| = -2

Answer: A) z1=2|z - 1| = 2


MCQ 35:

If z=3+4iz = 3 + 4i, then its modulus is:
A) 55
B) 77
C) 33
D) 44

Answer: A) 55


MCQ 36:

What is the result of dividing z1=2+3iz_1 = 2 + 3i by z2=1iz_2 = 1 - i?
A) 1+5i2\frac{1 + 5i}{2}
B) 7i2\frac{7 - i}{2}
C) 5+i2\frac{5 + i}{2}
D) 1i5\frac{1 - i}{5}

Answer: C) 5+i2\frac{5 + i}{2}


MCQ 37:

Which of the following statements about z=x+iyz = x + iy is true?
A) zzˉ=x2+y2z \cdot \bar{z} = x^2 + y^2
B) z+zˉ=2yz + \bar{z} = 2y
C) zˉ=xyi\bar{z} = -x - yi
D) zzˉ=2x2+2y2z \cdot \bar{z} = 2x^2 + 2y^2

Answer: A) zzˉ=x2+y2z \cdot \bar{z} = x^2 + y^2


MCQ 38:

What is the square of the complex number z=1+iz = 1 + i?
A) 2+i2 + i
B) 2i2 - i
C) 1+2i1 + 2i
D) 00

Answer: A) 2+i2 + i


MCQ 39:

For z=x+yiz = x + yi, the conjugate zˉ\bar{z} lies where in the Argand plane?
A) Above the real axis
B) Below the real axis
C) On the imaginary axis
D) Same as zz

Answer: B) Below the real axis


MCQ 40:

If z=3+4iz = 3 + 4i, then z2=? |z|^2 = ?:
A) 55
B) 2525
C) 77
D) 00

Answer: B) 2525


MCQ 41:

In the polar form, the argument of z=1iz = 1 - i is:
A) π/4\pi/4
B) π/4-\pi/4
C) π/2\pi/2
D) π/2-\pi/2

Answer: B) π/4-\pi/4


MCQ 42:

Which of the following represents the standard form of a complex number?
A) a+ba + b
B) a+b1a + b\sqrt{-1}
C) a+bia + bi
D) ab+iab + i

Answer: C) a+bia + bi


MCQ 43:

For z=2+3iz = 2 + 3i, the argument is:
A) tan1(3/2)\tan^{-1}(3/2)
B) sin1(3/2)\sin^{-1}(3/2)
C) cos1(2/3)\cos^{-1}(2/3)
D) tan1(2/3)\tan^{-1}(2/3)

Answer: A) tan1(3/2)\tan^{-1}(3/2)


MCQ 44:

If z=x+yiz = x + yi, the modulus of zz is the distance from the origin to:
A) x+iyx + iy
B) xiyx - iy
C) z+1z + 1
D) z1z - 1

Answer: A) x+iyx + iy


MCQ 45:

The power i10i^{10} equals:
A) 11
B) 1-1
C) ii
D) i-i

Answer: B) 1-1


MCQ 46:

Which of the following is true for the conjugate of z=a+biz = a + bi?
A) zˉ=a+bi\bar{z} = a + bi
B) zˉ=abi\bar{z} = -a - bi
C) zˉ=abi\bar{z} = a - bi
D) zˉ=a+bi\bar{z} = -a + bi

Answer: C) zˉ=abi\bar{z} = a - bi


MCQ 47:

For any complex number zz, zˉ|\bar{z}| is equal to:
A) z-|z|
B) z|z|
C) zz
D) z-z

Answer: B) z|z|


MCQ 48:

The square of z=iz = i is:
A) 1-1
B) ii
C) 11
D) i-i

Answer: A) 1-1


MCQ 49:

Which of the following equations represents a straight line in the Argand plane?
A) z=5|z| = 5
B) z3=2|z - 3| = 2
C) zi+z+i=6|z - i| + |z + i| = 6
D) Re(z)=3\text{Re}(z) = 3

Answer: D) Re(z)=3\text{Re}(z) = 3


MCQ 50:

What is (2+3i)(23i) (2 + 3i)(2 - 3i)?
A) 13-13
B) 1313
C) 129i12 - 9i
D) 4+9i4 + 9i

Answer: B) 1313
Explanation: (2+3i)(23i)=4(3i)2=4+9=13. (2 + 3i)(2 - 3i) = 4 - (3i)^2 = 4 + 9 = 13.


MCQ 51:

The magnitude of z=0+4iz = 0 + 4i is:
A) 00
B) 44
C) 22
D) 1616

Answer: B) 44


MCQ 52:

What is the solution of x2+16=0x^2 + 16 = 0?
A) ±4\pm 4
B) ±i4\pm i4
C) ±16i\pm 16i
D) No solution

Answer: B) ±i4\pm i4


MCQ 53:

The argument of z=1+iz = -1 + i is:
A) 3π/43\pi/4
B) π/4\pi/4
C) π/4-\pi/4
D) 5π/45\pi/4

Answer: A) 3π/43\pi/4


MCQ 54:

For z=2+2iz = 2 + 2i, the modulus is:
A) 8\sqrt{8}
B) 44
C) 22
D) 2\sqrt{2}

Answer: A) 8\sqrt{8}


MCQ 55:

The equation zzˉ=z2z \cdot \bar{z} = |z|^2 represents:
A) Conjugate property
B) Modulus property
C) Multiplication property
D) Square root property

Answer: B) Modulus property


MCQ 56:

If z=1iz = 1 - i, then z2z^2 is:
A) 22i2 - 2i
B) 00
C) 2i-2i
D) 2i2i

Answer: A) 22i2 - 2i


MCQ 57:

The polar form of z=1z = -1 is:
A) eiπe^{i\pi}
B) eiπe^{-i\pi}
C) eiπ/2e^{i\pi/2}
D) eiπ/2e^{-i\pi/2}

Answer: A) eiπe^{i\pi}


MCQ 58:

What is i7i^{7}?
A) i-i
B) 11
C) ii
D) 1-1

Answer: A) i-i
Explanation: i7=i41+3=i3=i.i^7 = i^{4 \cdot 1 + 3} = i^3 = -i.


MCQ 59:

For z1=3+2iz_1 = 3 + 2i and z2=1+4iz_2 = 1 + 4i, the sum z1+z2z_1 + z_2 is:
A) 4+6i4 + 6i
B) 22i2 - 2i
C) 46i4 - 6i
D) 2+2i2 + 2i

Answer: A) 4+6i4 + 6i


MCQ 60:

If z1=2+iz_1 = 2 + i and z2=1iz_2 = 1 - i, what is the product z1z2z_1 \cdot z_2?
A) 3+i3 + i
B) 3i3 - i
C) 1+i1 + i
D) 1i1 - i

Answer: B) 3i3 - i


MCQ 61:

For z=a+biz = a + bi, z2=zzˉ|z|^2 = z \cdot \bar{z} evaluates to:
A) a2+b2a^2 + b^2
B) a2b2a^2 - b^2
C) a+b|a + b|
D) a2+2ab+b2a^2 + 2ab + b^2

Answer: A) a2+b2a^2 + b^2


MCQ 62:

The argument of z=iz = i is:
A) π/4\pi/4
B) π/2\pi/2
C) π/2-\pi/2
D) 00

Answer: B) π/2\pi/2


MCQ 63:

The power i100i^{100} is:
A) 11
B) 1-1
C) ii
D) i-i

Answer: A) 11


MCQ 64:

Which equation represents a circle of radius 3 centered at the origin in the Argand plane?
A) z=3|z| = 3
B) z3=0|z - 3| = 0
C) z+3=3|z + 3| = 3
D) z=0|z| = 0

Answer: A) z=3|z| = 3


MCQ 65:

If z=2+5iz = 2 + 5i, then zˉ=?\bar{z} = ?:
A) 2+5i2 + 5i
B) 25i2 - 5i
C) 2+5i-2 + 5i
D) 25i-2 - 5i

Answer: B) 25i2 - 5i


MCQ 66:

The product of z=1+iz = 1 + i with its conjugate is:
A) 11
B) 22
C) 00
D) 1-1

Answer: B) 22
Explanation: zzˉ=(1+i)(1i)=12+12=2.z \cdot \bar{z} = (1 + i)(1 - i) = 1^2 + 1^2 = 2.


MCQ 67:

If z=x+yiz = x + yi, then zˉz=?\bar{z} \cdot z = ?:
A) x2+y2x^2 + y^2
B) x2y2x^2 - y^2
C) x2+y2ix^2 + y^2i
D) x2y2ix^2 - y^2i

Answer: A) x2+y2x^2 + y^2

No comments:

Post a Comment